Natural hybrids between Tragopogon mirus and T. miscellus (Asteraceae): a new perspective on karyotypic changes following hybridization at the polyploid level.

نویسندگان

  • Malorie J Lipman
  • Michael Chester
  • Pamela S Soltis
  • Douglas E Soltis
چکیده

UNLABELLED PREMISE OF THE STUDY Natural hybrids have formed in Pullman, Washington, United States between the recently formed allotetraploids Tragopogon miscellus and T. mirus. In addition to forming spontaneously, these hybrids are semifertile, propagating via achenes. Previous work indicated that the tetraploid hybrids have genetic contributions from three progenitor diploids: T. dubius, T. pratensis, and T. porrifolius. Because the hybrids contain genomes from three species, they should be karyotypically variable and have very low fertility. To better understand how these hybrids are semifertile, we applied fluorescent probes to determine chromosome composition. • METHODS We sequentially conducted fluorescence and genomic in situ hybridization to generate karyotypes for five hybrid individuals grown from field-collected achenes. • KEY RESULTS All plants had the expected somatic chromosome number (2n = 24), but none showed an additive F1 chromosome complement, i.e., two sets of chromosomes from T. dubius and one set of chromosomes each from T. porrifolius and T. pratensis. No individuals shared an identical karyotype, but chromosomal variation followed a compensatory pattern of substitutions, with all groups of putatively homeologous chromosomes consistently totaling four. • CONCLUSIONS The hybrids appear to be shifting away from a parentally additive F1 karyotype to chromosomal compositions that are mostly, or entirely, disomic. We hypothesize that this process may eventually lead to the elimination of chromosomes from a population and produce a stabilized karyotype distinct from both allotetraploid parents. This work has implications for other hybrids formed between polyploids, in that they may be hard to detect using sequence data alone due to multilateral patterns of chromosome elimination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid Chromosome Evolution in Recently Formed Polyploids in Tragopogon (Asteraceae)

BACKGROUND Polyploidy, frequently termed "whole genome duplication", is a major force in the evolution of many eukaryotes. Indeed, most angiosperm species have undergone at least one round of polyploidy in their evolutionary history. Despite enormous progress in our understanding of many aspects of polyploidy, we essentially have no information about the role of chromosome divergence in the est...

متن کامل

Evolution and expression of homeologous loci in Tragopogon miscellus (Asteraceae), a recent and reciprocally formed allopolyploid.

On both recent and ancient time scales, polyploidy (genome doubling) has been a significant evolutionary force in plants. Here, we examined multiple individuals from reciprocally formed populations of Tragopogon miscellus, an allotetraploid that formed repeatedly within the last 80 years from the diploids T. dubius and T. pratensis. Using cDNA-AFLPs followed by genomic and cDNA cleaved amplifie...

متن کامل

Molecular cytogenetic analysis of recently evolved Tragopogon (Asteraceae) allopolyploids reveal a karyotype that is additive of the diploid progenitors.

Tragopogon mirus and T. miscellus (both 2n = 4x = 24) are recent allotetraploids derived from T. dubius × T. porrifolius and T. dubius × T. pratensis (each 2n = 2x = 12), respectively. The genome sizes of T. mirus are additive of those of its diploid parents, but at least some populations of T. miscellus have undergone genome downsizing. To survey for genomic rearrangements in the allopolyploid...

متن کامل

Transcriptomic Shock Generates Evolutionary Novelty in a Newly Formed, Natural Allopolyploid Plant

New hybrid species might be expected to show patterns of gene expression intermediate to those shown by parental species. "Transcriptomic shock" may also occur, in which gene expression is disrupted; this may be further modified by whole genome duplication (causing allopolyploidy). "Shock" can include instantaneous partitioning of gene expression between parental copies of genes among tissues. ...

متن کامل

Cytonuclear Coordination Is Not Immediate upon Allopolyploid Formation in Tragopogon miscellus (Asteraceae) Allopolyploids

Allopolyploids, formed by hybridization and chromosome doubling, face the immediate challenge of having duplicated nuclear genomes that interact with the haploid and maternally inherited cytoplasmic (plastid and mitochondrial) genomes. Most of our knowledge of the genomic consequences of allopolyploidy has focused on the fate of the duplicated nuclear genes without regard to their potential int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of botany

دوره 100 10  شماره 

صفحات  -

تاریخ انتشار 2013